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The pressure dependence of the Hall constant of the five alkali metals has been measured to 15 000 kg/cm?*
at room temperature. The purpose of the measurements was to investigate the effect of lattice constant on
the warping of the Fermi surface. The Hall constant R is written as 1/Necn*, where N is the number of
carriers/cc and #* expresses the deviation from the free electron value of the Hall constant. In all the alkalis
except cesium, n* decreases monotonically with increasing pressure; the decreases range from 5%, in 15 000
kg/cm? for lithium to 89, in 15 000 kg/cm? for rubidium. In the case of cesium, n* passes through a minimum
at 5000 kg/cm? and rises to a value of 1.2 at 15 000 kg/cm?. The change of n* between room and liquid nitro-
gen temperatures-was measured and is less than 39, for all the alkalis except lithium. In lithium, n* decreases
about 259, between room and liquid nitrogen temperature The sign of the pressure dependence of n*, as
well as its magnitude, can be reconciled with recent band structure calculations by Ham only if highly
anisotropic scattering times are considered. The pressure results are explained in a semiquantitative manner
using a scattering time, 7, that varies by a factor of 3 over the Fermi surface. Consideration of the factors
determining the scattering time indicates the both umklapp processes and the large elastic anisotropy of the
alkalis contribute to the anisotropy of 7. A crude calculation shows that the present results can be explained

by the effects of umklapp processes alone.

l “HE Fermi surface in metals has recently been ex-
tensively investigated, theoretically and experi-
wwoaally. The alkali metals are of special interest, for
m are expected to conform closely to a free electron
4w wre, in which the electron energy E is propomondl
&' e square of the electron wave number &, and in
ahthe Fermi surface is consequently a sphere in &
peat_Furthermore, there have been some calculations
allow the shape of the Fermi surface to be de-
. The recent calculations by Ham' of the band
aure of the alkali metals are of particular impor-
for several reasons. They provide curves of E vs
the three principal directions in & space and allow
duction of an approximate shape for the Fermi
. They are made for the entire alkali series, using
% smme method in each case, and should give a quali-
s picture of the change in the shape of the Fermi
as one progresses through the series. They have
carried out for several values of lattice constant
provide a guide to how the Fermi surface should
under pressure.
“smpite the fact that there has been considerable
Jgress made in experimental techniques for studying
¥ermi surface, the methods that proved very suc-
#wl in investigating the noble metals, de Haas-van
“wn measurements using pulsed magnetic fields? and
arements of acoustic attenuation in magnetic
have not been applied to the alkali metals. This
wrge part because of the difficulty of growing and
ng single crystals of these very reactive metals.
e these techniques for determining the shape of
rmi surface are quite difficult, one can attempt
worted by the Office of Naval Research.
went address Raytheon Research Division, Waltham,
husetts.
ok S. Ham, Proceedings of the Fermi Surface Conference
Wiley & Sons, Inc., New York, 1960), p. 9
shoenberg, Phil. Mag. 5, 105 (1960).

\ Morse, A. Myers, and C. T. Walker, Phys. Rev. Letters
1960).

to glean some information from measurements of the
transport properties. In particular, it would be interest-
ing to make such measurements as a function of lattice
constant by performing them under pressure. The
alkalis are particularly attractive for such measure-
ments, since they are highly compressible; the linear
contraction of potassium, for example, is 9% in 15 000
kg/cm?. In order to take advantage of the pressures
available in the laboratory, the experiment should be
done at room or liquid nitrogen temperatures, since at
liquid helium temperature the pressure transmitting
fluid would freeze at relatively low pressures.

The simplest transport property to measure is the
conductivity; Bridgman has measured the resistance
of all five alkali metals as a function of pressure.*—® For
a metal having a spherical Fermi surface the conduc-
tivity, o, is given by

o= Né‘r/m*, (1)

where N is the number of electrons/cc, e is the elec-
tronic charge, r is an isotropic scattering time, and m*
an effective mass.

For a nonspherical Fermi surface this expression is
multiplied by a factor that depends upon the distortion
of the surface. Olson and Rodriguez’ give this factor for
a particular type of warping. Since the conductivity
depends upon the magnitude of the scattering time and
upon the effective mass, both of which may have strong
pressure dependences, Bridgman’s data are difficult to
interpret. Furthermore, since more detailed study shows
the conductivity is relatively insensitive to distortion
of the Fermi surface, these data are not useful for study-
ing the pressure dependence of the surface.

On the other hand the expressions for the magneto-

¢ P. W. Bridgman, Phys. Rev. 27, 68 (1926).

8 P. W. Bridgman, Proc. Am. Acad. Arts Sci. 72, 176 (1938).
6 P, W. Bridgman, Proc. Am. Acad. Arts Sci. 81, 184 (1952).
’R. Olson and S. Rodriguez, Phys. Rev. 108, 1212 (1957).
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754 DEUTSCH),
resistance of a metal with a warped Fermi surface ob-
tained by Olson and Rodriguez show that this property
is quite sensitive to the shape of the surface. Unfor-
tunately the size of the magnetoresistance effect de-
pends on the square of the mobility and becomes ex-
tremely small at room temperature. Measurements by
Kapitza® on sodium and lithium using pulsed magnetic
fields of 300 kgauss at room temperature showed re-
sistance changes of less than 29 ; since the effect goes
as the square of the magnetic field ordinary dc magnetic
fields of 10 kgauss would produce resistance changes of
0.0029%, too small to be useful.

The Hall effect is another transport property that can
be studied. The Hall constant, R, is defined by

E=RJH, (2)

where E is the electric field in the y direction produced
in a sample in which a current of density J flows along
the x direction and which is subject to a magnetic field
H along the z direction. The Hall constant, in units of

(volt-cm)/ (ampere-gauss), may be written as

R=1/Necn*, (3)

where ¢ is the velocity of light in cm/sec and »*, which
we shall refer to as electrons/atom, is a factor which is
unity if the expression for R is derived for the case of
free electrons or for any spherical Fermi surface. More
accurate treatments of the Hall effect involve solving
the Boltzmann transport equation for specific forms of
the energy, E(k), and the scattering time 7(k). The
Hall constant is then given as the quotient of two inte-
grals involving the scattering time and energy deriva-
tives taken over the Fermi surface®; n* is then obtained
as a factor which depends only on the anisotropy of
7(k) and E(k), and is independent of the magnitude of .

Cooper and Raimes have carried out such a calcula-
tion for the case of anisotropic scattering times and
warped Fermi surfaces that are described by Kubic
harmonics.'®!* They express the length of the wave
vector of an electron on the Fermi surface as:

k=ko[1+ 1Y 4(6,6)+ A1V 6(60,0) ]. 4)
Similarly they write

k
(—) — k(14 BY(09)+ BV s(00)]; (5)
3E E-nb'/

the derivative is taken at the Fermi energy £;. The
scattering time is also expanded in Kubic harmonics;

r=7[14+CY(8,6)+C1Vs(0,)]. (6)

The Kubic harmonics V4(6,¢) and V(8,0) are combina-
tions of spherical harmonics having cubic symmetry;

8 P. Kapitza, Proc. Roy. Soc. (LLondon) A123, 292 (1929).

* A, H. Wilson, The Theory of Metals (Cambridge University
Press, New York, 1953), p. 226.

10 J. R. A. Cooper and S. Raimes, Phil. Mag. 4, 145 (1959).

1 J, R. A. Cooper and S. Raimes, Phil. Mag. 4, 1149 (1959).
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they are given by*?
Y4(6,6)=5/2(x'+y*+2'—3/5),

and
Ve(0,0)=231/2(x2y*22— V4(0,0)/55—1/107

where x=sinf cos¢, y=sinf sing and z=cosf
principal directions the values of the Kubic has
are:

¥(100)=1,
¥e(100)=1,

V(110)=1/4,
Vs(110)= —13/8,

By evaluating the expression for the Hall consta:

Y(111)=
Ve(111)= 1¢

the above forms for the scattering time and the{®ws

energy surfaces Cooper and Raimes obtain an
sion for n*;

n*=1+1,21[942—184 (C— B)— (C— B)]
+8/13[204 2— 404 ,(C1— B1)— (Ci—By¥_

As expected, »* is unity for sperical surfaces a

lﬂwi‘

tropic scattering times.

Except tfor the direct volume dependence of
pressure dependence of R comes from »n*. Chas.
n* reflect changes in the anisotropy of the Fermi -
and/or the anisotropy of the scattering time. If »
urement of the pressure dependence of the Hall ¢«
is performed in the impurity scattering range
the anisotropy of the scattering time is directly
only to the anisotropy of the Fermi surface, the
of the measurement can be interpreted in 1«
changes of the anisotropy of the Fermi surfac:
in a room temperature measurement lattice s
is dominant and the possibility of anisotrops
scattering time arising from the elastic anisot
the crystal must be considered.

In addition to sensitivity of the Hall effe«
anisotropy of the Fermi surface and of the w
time there are some experimental advantages
measurement. It can be performed at room
ture, single crystal samples are not necessary, «
the scattering is dominated by the lattice small
of impurities are not important.

EXPERIMENTAL"

The electrical measurements were perform.
dc system using a Rubicon No. 2767 uv pot.
with a galvanometer amplifier as a detects
vanometer amplifier employed a simple op
to focus the light reflected by the mirror of
galvanometer onto two selenium photocelis
connected so that their voltages opposed
of the pair fed a secondary galvanomet«
vanometer amplifier had a sensitivity of

2. C. von der Lage and H. A. Bethe, Phy
(1947).

3 The experimental setup is described in gr
Technical Report HP-6, Gordon McKay Lahors
University, Cambridge, Massachusetts, 1960 (un;
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mdary galvanometer deflection, making it possible
vsolve 10~8 v. The sample current was 3 amp. The
«net was of laboratory design, with 7-in. pole pieces
a 2-in. gap. After initial checks on the linearity of
voltage vs magnetic field, all measurements were
i by reversing a fixed field of 6310 gauss.
ve samples were placed in a beryllium-copper bomb,
h was connected by %-in. flexible stainless steel
ng to the piston and cylinder arrangement used to
rate the pressure. The bomb has been described in
ient detail elsewhere.* The electrical leads were
ght out through a four terminal plug of beryllium
er. The pressure was determined by measuring
a bridge the change of resistance of a manganin
which was calibrated by assuming the freezing
sure of Hg at 0°C to be 7640 kg/cm?. Pentane was
as the pressure transmitting fluid.
umple preparation and handling presented some
«ulty, since the alkali metals are highly reactive.
usual technique for making and preserving alkali
al samples for electrical measurements is to freeze
metal in glass capillaries or ampules. This is not
able for measurements under pressure because the
t of the glass is to generate nonhydrostatic strains
he sample. The sample holder finally developed,
wn in Fig. 1, incorporates several compromises. In
er to expose the metal to the pressure fluid we had
olerate some surface oxidation. While it is desirable
nave the sample completely free to contract under
ssure, it was necessary to constrain it somewhat in
er to make reliable contacts and to keep the sample
ntation fixed. The relatively small hysteresis found
urves of Hall voltage vs pressure, of the order of
. and the agreement of the pressure dependence of
resistance of rubidium with the data of Bridgman
free samples to at least 109, indicates that the
ple is behaving as if it were unconstrained.
'he samples of lithium, sodium, and potassium were
med under Deo Base, a light mineral oil, by rolling
heet of the metal to a thickness ranging from 0.007
to 0.050 in. and trimming it to the shape shown
ile it was on the sample holder. In the case of
idium and cesium, it was necessary to cool the oil
wpproximately 5°C in order to reduce the oxidation
»and, in the case of cesium, to prevent melting. The
» Base and the pentane pressure transmitting fluid
¢ purified by reacting them with alkali chips and
wules of molten sodium-potassium alloy.
he lithium, from Fairmount Chemical Company,
I the potassium from Mallinckrodt Chemical Com-
'y, were cleaned by heating to above the melting
nt under forepump vacuum. The sodium, from
rck and Company, was cleaned by melting under
The object of the cleaning process was to produce
roscopically homogeneous specimens, not to remove

W. Paul, G. B. Benedek, and D. M. Warschauer, Rev. Sci.
30, 874 (1959).
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F1c. 1. Sample holder and sample.

impurities which were found not to be important in the
lattice scattering range, as would be expected. The
rubidium and cesium were obtained from MacKay and
from Fairmount Chemical; they had already been dis-
tilled into glass vials and no attempt was made to clean
them further.

Although the primary interest was in relative changes
of the Hall constant, thickness measurements were
made on lithium, sodium, and potassium using a
0.001-in. dial comparator with an accuracy of 0.001 in.

Temperature measurements on lithium were per-
formed using a sample holder similar to that used in the
pressure experiments. The sample holder and an asso-
ciated heater were enclosed in a glass tube filled with
helium exchange gas and the entire assembly was
placed in a nitrogen Dewar; temperatures below 77°K
were obtained by pumping on the liquid nitrogen and
measured using a copper-constantan thermocouple.
Rubidium and cesium were protected from accidental
exposure to air by enclosing the sample holder in a
formica tube filled with mineral oil.

RESULTS

Figure 2 shows the results of the pre.sure measure-
ments on typical samples of lithium, sodium, and
rubidium, in terms of the normalized Hall voltage at
fixed field V; vs pressure. As an indication of the kind
of reproducibility achieved, in a total of five runs on
two different samples of rubidium the decrease in Vy
in 15 000 kg/cm? was between 129, and 139, for four
of the runs and 99 in the fifth run.

In contrast to the pressure results on the other
alkalis, the results for different potassium samples did
not agree. Figure 3 indicates this difference and the
approximate range of the value of V at 15 000 kg/cm?.
The resistance vs pressure curve for potassium was
anomalous insofar as it consistently differed from the
data of Bridgman.® Qur value of 0.4 for the normalized
resistance at 15000 kg/cm? is in sharp disagreement
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VH
0.90
0.80
Rb No Ui 0.70
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F16. 2. Normalized Hall voltage vs pressure for lithium, . A o
sodium, and rubidium. Qo8 5000 10 000 15 00

PRESSURE kq/unz

with Bridgman’s value of 0.22. Because we suspected F16. 4. Normalized Hall voltage vs pressure for cesium

that our sample holder might be acting as a constraint ) .
we repeated Bridgman’s experiment, which used a free Since the Hall voltage is
wire of potassium. Although difficulties with the con- Vu=RHI/t=HI/Necn*t,
tacts caused sample current fluctuations and made it
impossible to get accurate curves, the value of the Where ¢is the thickness of the sarpple and 7 the sam
normalized resistance at 15000 kg/cm?, 0.4, was current two dimensional corrections must be apps
confirmed. to obtain »*. These give

Figure 4 shows a typical Hall voltage curve for W=V (P)/Vu(P)(P),
cesium; this measurement was made at approximately ’
14°C. The reproducibility was good; the value of where {(P) is the thickness as a function of press
Vi at 15 000 kg/cm? was between 0.61 and 0.64 for six and V(P) the volume. V(0)=¢(0)=1. The value-
runs on two different samples. » V(P) and t(P) are obtained from Bridgman’s «
pressibility data.*'® n* was arbitrarily normalizes
unity at atmospheric pressure. The resulting curve

T T g ; :
S | n* vs pressure for the alkalis are shown in Figs. § an
POTASSIUM
1.00 T
VH LITHIUM
n* SODIUM
095} o
095 =
POTASSIUM
0.90}- |
© INCREASING PRESSURE RUBIDIUM
SAMP Im-
o DECREASING pnessung} LE 29 II-150
A INCREASING PRESSURE 0.90 1 1
£ DECREASING PRESSURE}SAMPLE it 5000 10000
PRESSURE kg /cm?
S5 50100 |ot;oo
15000 .
PRESSURE kg /cm?2 F1G. 5. n*, normalized electrons/atom vs pressure for h

sodium, potassium, and rubidium.
F16. 3. Normalized Hall voltage vs pressure for twa S, RESMERHT, SNC e

different potassium samples. 15 P, W. Bridgman, Proc. Am. Acad. Arts Sci. 70, 93
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'6. 6. n*, normalized electrons/atom vs pressure for cesium.

« curves for lithium and sodium, where the pressure
rct was both small and linear, were computed from
« average of the least square slopes of Vg vs pressure
two lithium samples and four sodium samples. The
rves for potassium, rubidium, and cesium were ob-
med from the values of Vg read from curves for
«cific samples which, except for potassium, were well
gwoducible. Since we were interested in fitting the
wpe of the n* vs pressure curve the extra precision to
gained by doing a least squares fit of all the data to
guadratic curve was not needed.
Figure 7 shows #* vs temperature for lithium. The
wues of n* are computed from the measured values of
« using Bridgman’s® values of the thermal expansion.
sble I shows the values of V4 and »* at room and
mid nitrogen temperatures for sodium, potassium,
sbidium, and cesium; #* is not given for cesium
«rause no value of the thermal expansion coefficient
available.
In the course of interpreting the results we become
erested in the absolute value of »*; in particular we
ticed that the literature values of the Hall constant

-200

T T T
1.0 - 7
n.
0.9 |- -1
0.8 - -4
07k =
LITHIUM SAMPLE IV - I8
06 1 1 I
: -100

40 0
TEMPERATURE °C

F16. 7. n*, normalized electrons/atoms vs
temperature for lithium.
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TasLE 1. Hall voltages of four alkali metals at room
and liquid nitrogen temperatures.
Ve n*
Metal Temp. Normalized  Normalized
Cesium R.T. 1.000 3
77°K 0.973
Rubidium BT 1.000 1.00
77°K 0.971 1.00
Potassium R.T. 1.000 1.00
77°K 0.981 0.98
Sodium R.T. 1.000 1.00
77°K 1.000 0.97

for sodium and potassium'® gave n* greater than unity.
As we expected, for reasons that will be given in the
discussion, that #* should be less than unity we de-
cided to compute the absolute value of the Hall constant
from our data where possible. Figure 8 shows 2Vy vs
the reciprocal of sample thickness for sodium, lithium,
and potassium; the slopes of these plots were used to
obtain the Hall constants. Table II lists the values of
R and »n* obtained, along with values of R calculated
on a free electron basis and values of n* calculated from
published data on lithium,'” rubidium,'® and cesium.'®
The electrical portion of the measurement is accurate
to better than 29, since the accuracy of the voltage
measurement is about 19, and the current and mag-
netic field measurements are each accurate to better
than 39, The thickness measurement, accurate to
0.001 in., gives a 109, error on (0.010 in.) samples and
an error of less than 5%, on the thicker (0.020 in. to
0.050 in.) samples. Since the latter were favored in
fitting straight lines to the points shown in Fig. 8, we
estimate the error due to the thickness measurement is
5%. The over-all accuracy of the measurement is 7%,.
The accuracy of the previous Hall measurements is
given as 69, for sodium and 5%, for potassium,'® so that
the disagreement falls outside of experimental error.

TasLE II. Hall constants of the alkali metals.

Li Na K Rb Cs

Reate. X 1012 13.5 24.5 46.5
volt-cm
amp-gauss
Rexp X101 15.5 25.8 49.0
volt-cm
amp-gauss
Boicp, 0.87 0.95 0.95
n* from literature 0.79 1.17 1.11 094 098

values of R—

1 F. J. Studer and W. D. Williams, Phys. Rev. 47, 291 (1935).

7 A. v. Ettingshausen and W. Nernst, Ann. Physik 29, 343
(1886).

8 E. Krautz, Z. Naturforsch. Sa, 13 (1958).
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T T can be used to obtain those parameters which des s
LoTaseilY the warping of the Fermi surface as a function of s
L e i ° 7 sure; we shall see that not even the direction of
experimental effect can be explained on the basis «
pressure dependent warping of the Fermi surface e
and that the scattering time must also be hugh
anisotropic.

Ham’s data give electron energy vs ka/2wx, whets Q-
is the lattice constant, for the [1007], [110], and [ 111
directions. If the Fermi energy is known, the length «
the k& vector to the Fermi surface can be obtained %
; ) the three principal directions and Eq. (4) used 1o
) 50 100 150 compute k¢, A, and 4. The Fermi energy may be s
Tuickness” [ mcwes ] tained from the requirement that the volume in & spmse

enclosed by the Fermi surface contain exactly one elee
tronic state per atom. Using an expression for the

I + 3.00 AMPERES

SAMPLE

L)
T
|

2V, IN MICROVOLTS

¢ ) ! } volume enclosed by a surface of the form givem by
ol waesia i Eq. (4) one can show that for the values of the warping
B . R AReEaES coefficients encountered in the alkalis the enclosed
e saunee | volume is, to better than 29, just that of a sphere of
i radius ko. The condition on the enclosed volume yields
3 i the requirement
T koa/2m=0.62. gt
E‘ 2- o 1 The Fermi energy was obtained simply by picking ana
energy for which the computed value of k, satistied |
= 7 Eq. (12). The results of this procedure are givem im ’
Table III along with the values of ak/2r for the thowe
© % 00 ™ principal directions; the last figure on the values of 4
thickness' - [incres)” and 4, is not justified by the precision of the fit bt is
given to avoid obscuring some of the changes in the
warping parameters. In Table IV we give the wasping
3.0 =y 3 parameters for lattice constants corresponding 1o st-
. G'L—L!.o s mosphcric pressure zu_)d to '15 000 kg/cn?z, as obtained
; i e i by a linear }l\_tcr[)olulu)n using the data in Table IH
SAREE The coefhicients B and B, are not independent «f A
wz.o—— ¥ B and 4,, but depend upon them through some ravher
3 cumbersome algebraic expressions. Table TI1 siwows
e that the & vectors for the [1007] and [ ' 11] directions
s wof =
1 TasLE III. Warping parameters for alkali metals computed
3 from data of Ham.
. . a ek @k dkmn
o 50 100 150 atomic  ——
THICKNESS ' - INCHES ~' Metal units 27 2x 2x A i
F1G. 8. 2V vs reciprocal thickness for sodium, Li gé.li 82(1)‘; 82:252 82;2 :g%f i ::
SN snd eitamiom, 534 0575 0665 059 —0031 068
Na 10.04
DISCUSSION gé;} No anisotropy
The results of the pressure measurements show two K 1146 0625 0.640 0.625 —0.003 —00%
important features. First, for the elements lithium, lg?f 8?2%(5) gggg 8?;2 8013 g“
sodium, potassium, and rubidium the value of #n* de- o ' 0l 0620 0611 —0004 —0@m
creases as the pressure increases. Second, in cesium n* 1074 0605 0.627 0605 —0005 —08
goes through a minimum as the pressure increases. 905 0560 0680 0560 —0028 -0
Equation (9) for n* contains too many parameters Cs ifig g'ggg 8'2;(5) g'% :g'gg :0..
to allow any conclusions to be drawn from the experi- 1004 0495 0655 0495 —0041 —

mental data alone. However the computations of Ham




usally equal; in this case Eq. (4) leads to the con-
dition 4=0.474,. We used this relation to compute
B and B, for values of 4, between 0.00 and —0.08;
the result can be expressed as

B/A=Bl/Al=33—6OA1, fOl' A1<0. (13)

Before attempting to fit the curves of n* vs pressure
it is useful to notice that the terms arising from the
sixth order Kubic harmonics dominate the expression
for n*, Eq. (9); if C=0 and |4|<0.03 the terms in 4
and B contribute only about 19, to n*. We can simplify

sidering only the contribution of terms in 4;, By, and
C; to n*; the expression for n* then becomes:

#*=1+12.34,2—24.64,(C,— B,)—0.615(C,— By)*.
(14)

Examination of this expression together with Eq. (13)
and Table IV shows that if the scattering time is taken
to be isotropic, that is if C;=0, the predicted change in
n* will be an increase as the pressure increases. In order
to obtain a decrease in »* with an increase in 4, a non-
zero value of C; must be considered. In Fig. 9 we give
some curves of #n* vs A, obtained using Egs. (13) and
(14) and various forms of C;. C;=—0.3 and C,=—0.4
represent the simplest nonzero Cy’s whose magnitudes
give values of n* at 4,=0 that are in the same range as
the observed values. The other forms of Cy were chosen
because they give a steeper initial slope of the n* vs
4, curve.

The experimental data can be semi-quantitatively
fitted using non-zero Cy’s of the form shown in Fig. 9;
that is the change in n* produced by changes in A, of
the magnitude indicated in Table IV is consistent with
the size of the observed effect. Furthermore the value of
#* passes through a minimum and then rises rapidly;
no additional assumptions need be introduced to
account for the observed minimum of »* in cesium.
However a quantitative fit does not seem feasible at
this stage; some theoretical guidance as to the form of
C, is needed. It is perhaps worth noting that while the
consideration of nonzero Cy’s was forced upon us by the
direction of the change in n*, it is also needed to account

Tasre IV. Warping parameters of alkali metals at two pressures,
computed from data of Ham.

a

Pressure atomic
Metal kg/cm? units A Ay
Li 1 6.64 —0.011 —0.011
15 000 6.42 —0.015 —0.015
K 1 9.85 —0.001 —0.003
15 000 9.00 —0.007 —0.026
Rb 1 10.64 —0.006 —0.018
15 000 9.55 —0.021 —0.047
Cs 1 11.44 —0.021 —0.045
15 000 10.01 —0.041 —0.088

PRESSURE DEPENDENCE OF

the fitting of the data with no significant error by con--

HALL CONSTANT 759
T
1.5} A
o Cis-4
Cis-3+4.5A,
1.0 =

Ci==4+5A,

O3 n#ai+12.3A2 -24.6A,(C,-B)-.615(C,-8)2

B, = 3.3A,-60A2

1 1
-.05 -
Ay 10

F16. 9. n* vs A, for various values of C,.

for the magnitude of the change in #* in sodium and
lithium, where the predicted change in 4, is small.

Several difficulties with the fit should be considered.
Ham’s data, in Table IV, indicate the warping in sodium
is zero both at atmospheric’ pressure and at 15000
kg/cm? making it impossible to attribute the change
in n* to the pressure dependence of 4,. However the
existance of a low temperature magnetoresistance in
sodium implies that there is a small anisotropy of the
Fermi surface although this effect might conceivably
be connected with the martensitic transition that
sodium undergoes above hydrogen temperature or with
anisotropic scattering times. If 4, is nonzero for sodium
we expect it to change with pressure and if C, is large
enough the observed effect could still be accounted for.

The calculated change in A, for lithium is small
(0.004) ; in order to account for the observed 5%, change
in #* we chose a value for C; of —0.4+54, to obtain
a sufficiently steep initial slope on the n* vs 4, curve.
The value of n* for lithium at atmospheric pressure ob-
tained from this curve is 0.78, in agreement with the
fact that the absolute value of »n* for lithium is sub-
stantially less than one (Table II). By contrast the
absolute values of #n* are much closer to unity for the
other alkalis; this suggests that the value of C; for
lithium should be different from that for the other
alkalis.

In order to account for the observed minimum in n*
for cesium it is necessary to postulate that the at-
mospheric pressure value for 4, is approximately —0.02
indicating considerably less warping than Ham’s cal-
culations, which give —0.045. With this assumption
about 4, the cesium data can be explained by the curve
for C;=—0.34+4.5 A,. If one accepts Ham’s value of
A= —0.045 the curve for Cy=—0.4+35 A, will produce
a minimum in #* with further warping, but this curve
also implies an unreasonably low value of n* at at-
mospheric pressure (0.6). Alternatively, since the work
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of Ham indicates that the Fermi surface nearly touches
the zone boundary, it is possible that the drastic change
in the behavior of n* vs pressure is due to the beginning
of contact with the zone face.

Another result of anisotropic scattering times is that
the values of n* for 4,=0 are always less than one. As
Ham’s calculations indicate the Fermi surface for
sodium is spherical the value n*=1.17 obtained from
previous measurements'® seems unreasonable, as does
the value for n*=1.11 for potassium. If we accept our
values for sodium and potassium, the atmospheric pres-
sure value of n* is less than one for all the alkalis; the
proposed explanation for this is the existence of a non-
zero C).

The pressure data and the changes in the warping
parameter A, obtained from Ham’s calculation agree
semiquantitatively if we consider anisotropic scattering
times with values of C, of about —0.3. We shall indicate
possible sources of the proposed anisotropy and make
an estimate of its order of magnitude.

Mott and Jones' have obtained an expression for an
isotropic scattering time assuming a spherical Fermi
surface and isotropic transition probabilities; that is
P’dS’, the probability per unit time of an electron
making a transition between two states k and &’ both
lying on the same constant energy surface is assumed to
be independent of the original state k and to be a func-
tion of the angle 6 between k and %’ only. dS’ is an ele-
ment of area on a constant energy surface about the
state k'. If we follow their derivation and let the electric
field (z axis) lie along the direction k for which we wish
to compute 7(k), but do not assume isotropic scattering
times or isotropic transition probabilities we obtain:

1 cosfr (k)
i 1———— |PwdS’. 15
(k) fpml[ (k) ] 4 (15)

sphere

Since Eq. (15) is an integral equation for 7 (k) we shall
set 7(k’)/7(k)=1 inside the integral in order to estimate
the anisotropy of r(k). This may be regarded as the
first step of an iteration procedure for finding . With
this assumption Eq. (15) can be written as

1 r 2r .
b fo dé j; [1—cos#]|sind| Px.+(6)d8; (16)

¢ is the angle between the plane of  and %’ and the
2x plane and k, the radius of the Fermi sphere.
These limits on # and ¢, rather than the more con-
ventional ones in which # goes from 0 to = and ¢ from
0 to 2x, are chosen because of the possibility that
Py 4(6)5= Py 4(—0). This possibility arises because for
an arbitrary direction of & the section of the phonon
Brillouin zone centered on the tip of the & vector is not

9 N. F. Mott and H. Jones, Theory of the Properties of Melals
and Alloys (Dover Publications, New York, 1958), p. 259.
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symmetrical about the line 6=0. The absst: Sl
sign on sind is used because of the limits om # wuligh
Perturbation theory gives

1 IUu’I2
Pk-‘(o)=‘_- R}
4r’h |VkE[ 'Y

"

where Uy’ is the matrix element of the
potential U taken between the initial electi
¥ and the final state y,’; unit crystal volume
Only the perturbation due to the lattice
considered, since these dominate the scatt
trons at room temperature. We write

U(n)=% V[r—I=RMO]-V(r-D

==Y R()-vV(r=1);

where V (r—1) is the contribution to the
associated with the ion at lattice point | and
displacement of the ion at I. V(r—I) includes
potential due to the ion core and to the
shield the core. This is a refined “rigid ion” wadiel i
which a neutralizing charge distribution which s
with the ion core has been introduced.
The wave functions are written in the Bloch fessm

Vi ()= e Tu,(r). (19

By changing the origin to the lattice point at | so thet
r'=r—1I the matrix element may be written as

Usw=—3 R() exp[—i(k—K)-I]
X[ wr T, @
crystal

Bailyn® has computed the integral in Eq. (20) in &
calculation that uses the Hartree-Fock equation for the
electrons. In his notation

f VATV W )id=9IS],  (@1)
crystal

where §=k—k’/|k—k’|. J denotes the contributiom
to the matrix element of the ion core alone and S denotes
a shielding factor which includes the effect of the elee-
tron cloud about the core and the exchange hole.
Normalizing factors have been dropped.

If we now express the displacement R(l) in terms of
lattice waves we have,

Ra)=2p an!.ﬂaq,re_iq.|» ('i

where 24, is a unit vector which depends on g, thw
lattice vibration or phonon wave number and the pe

0 M. Bailyn, Phys. Rev. 120, 381 (1960).
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wesation p. a4 is the amplitude of the vibration. Then
w=—23 3 exp[—i(k—k'+q)-IJaq,, = ¢, $[/S].
T 1 ?

_ (23)
f%e sum over | yields the condition

& ~k’4+-q=K, a reciprocal lattice vector, or=0, (24)

#d a value N, the number of ions. Since k and k' are
specified and we have restricted q to the first Brillouin
#mme, q is specified and the sum over q reduces to a
single term. g, is obtained from the matrix element for
» phonon annihilation or creation operator and is given

o L
R (e

o= X or
o [ZNMw.,,,,

annihilation
(25)
[fiq,p+1]t creation,

where M is the mass of the ion and w,,, the angular
fsequency of the phonon q.%
iy » the equilibrium number of phonons is given by
the factor;
1
Tlq.p= \ (26)
c¥ exp(hwq, ,/kT)—1

In the high temperature limit %w/k7T<<1 and a4,
becomes

h kT ¢ B}
s oy
2NMuwqg,p hwqpd  Nuwg,p

(27)

The constants have been lumped into B; the 1/V
cancels the N from the sum in Eq. (23).

Then by substituting Eq. (27) into Eq. (23) for Ui’
and dropping the sum over p with the understanding
that we will consider the polarization that gives the
largest contribution to Uy’ we obtain

B [(7S}(0) F (2,5 9)

Py 4(6)=
41'2'1] VgEi &’

(28)

Wq.p

When all the constants are included in D and Eq. (28)
# substituted into Eq. (16) we obtain

‘ T 2%
= ) dé
“pd )
(1—cosd) | sin8| [{ ]S} () F*(2q.5*$)

wq.s’ | VAE|w .

(29)

We can now consider the sources of anisotropy in
#). The density of states factor is, strictly speaking,
satropic since a spherical constant energy surface was
mmamed in obtaining Eq. (13). If Eq. (15) is still
wsumed valid for a warped Fermi surface, then

*J. M. Ziman, Electrons and Phonons (Oxford University
wm, New York, 1960), p. 181.

TABLE V. Velocity of sound in potassium. Numerical values
are for potassium in units of dynes/cm?®*X10-%,

Values of pcq.p*

Direction of Direction of propagation
polarization 100 110 111
Longitudinal c¢11=4.2 §[cu+cin+2cu]l =64 §lcu+2c:+4cul=7.1
Transverse =26 cu=2.6 —

[o01]

cu—cia cu—cintcu
[110] —_ =0.41 —-—3——-1.15

1/|V:E| s acts as a weighting factor in Eq. (29). The
variation of this factor with direction can be estimated
using Eq. (5); for a warping typical of the alkali metals,
Ay=—0.02, B=B;=—0.09, the value of the density
of states factor varies by about 4209, from its average
value. This is a relatively weak weighting factor, com-
pared with the effect of w,, %
We now write

(30)

Wgq,p=Cq,99,

and chose for ¢q,, the velocity of sound in the elastic
limit (small g).

Although this is incorrect for large ¢, we are only
concerned with indicating the relative importance of
the longitudinal and transverse branches of the phonon
spectrum and of the different directions of the same
branch. In Table V, we list expressions for the velocity
of sound squared times the density for the three prin-
cipal directions® and evaluate these expressions using
the published values of the elastic constants for po-
tassium.”? The table indicates how bad the assumption
of an elastically isotropic solid, usually made in com-
puting 7, is for the alkali metals. Since cq,,* is sub-
stantially larger for the longitudinal modes than for
the transverse ones the contribution of the transverse
phonons to the integral Eq. (29) is weighted more
strongly than that of the longitudinal ones. Likewise
certain transitions, namely those using [1107] phonons
polarized 110 will be weighted much more strongly than
others. The anisotropy in the sound velocity is averaged
in Eq. (29), since transitions from a given initial state
k to those states for which the transition probability is
large involve many different phonon directions. Since
the angular terms in the integral Eq. (29) weight
certain values of the scattering angle, 6, heavily and
since the phonon direction for fixed # depends on the
initial state k we do not expect averaging to be com-
plete, although we expect the anisotropy of (k) to be
considerably less than that of cg,,%.

Another source of anisotropy is the term 1/¢* in
Eq. (29). For a normal (N) process, in which K=0,
q depends only on the angle 8 between k and k’; how-

" Jules de Launay, Solid-State Physics, edited by F. Seitz and
D. Turnbull (Academic Press, Inc., New York, 1956), p. 267.

B American Institute of Physics Handbook (McGraw-Hill Book
Company, Inc., New York, 1957), pp. 3-81.
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ever for an umklapp (U.K.) process in which K0,
q depends not only on 6, but also on the particular re-
ciprocal lattice vector K used. The latter depends on
the initial state k.

Figure 10 shows a cross section of the Brillouin zone
for a bcc lattice, taken in a [001] plane. The circles
are cross sections of the Fermi surface and the dashed
square is a zone for phonons, centered on the state k.
The U.K. processes are those for which the final state
K’ lies on that portion of the circle centered at 0 which
is outside the dashed square. The dependence of |q|
on the initial state k£ can be most easily seen by taking
6=180° and k first in the [100] and then in the [110]
direction. For the latter direction |q| is about 4 aslarge
as for k in the [1007].

Normal processes must use longitudinal phonons, at
least for those directions in which a separation into
longitudinal and transverse modes is possible, because
the term &, ,-§ becomes &, ,-q and this is zero for a
transverse mode. For a U.K. process § is not parallel to
q and transverse phonons participate; indeed the small
sound velocity for transverse phonons emphasizes those
U.K. processes which use transverse phonons.

We should like to obtain the anisotropy of 7(k). To
do this accurately one would need to choose a direction
k, compute q, ¢q 5%, and &, for a large number of points
k" on a Fermi sphere and evaluate Eq. (29). This is a
major computational task; a simpler but considerably
less accurate procedure is to consider only scattering
in two dimensions and evaluate the 6 integral in Eq. (29)
for fixed ¢. Some of the loss of accuracy comes from the
fact that for some k directions the 8 integral depends
strongly on the value of ¢ chosen. For example, if one
chose k in the 110 direction and replaced the Brillouin
zone for phonons by a sphere of equal volume, there is
¢ symmetry in the sense that |q| for fixed 8 is inde-
pendent of ¢, although cq,, and &4 ,-§ are not; on the
other hand for k in a 111 direction this is not true.

o
/o

A

-3y : Kx
o 100

F1G. 10. Cross section, in [001] plane, of Brillouin
zones for bcc metal.

We estimated the anisotropy in 7(k) by evaiws g
27 (1—cosd) | sind|[ {J.S} (8)
I(k)=f ( | |q’lE{ } (6) Pae
0

for & in the [100], [1107, and [111] directions Thes
a very crude procedure, which not only replaces the
three dimensional integral in Eq. (29) by a two dimsems-
sional one, but also considers the velocity of sound. s
polarization factor 2, ,-§ and the density of states &8
constants. The calculation will underestimate e
anisotropy in 7 since it ignores the anisotropy of the
velocity of sound (Table V).

We obtained the values of (JS)? from Bailyn™, im
Table VI we list his values of %*(J.S)? vs u=sin#/2 fer
potassium and lithium. Potassium was chosen as
sentative of all the alkalis except lithium, which
from the others in that (J.S)? goes through a zero mems

"W

TasLE VI. Scattering functions for K and Li using
Bailyn’s values of #*(JS).

~—

0 (1—cos8) wW¥(JS) w*(JS)* F@) F@®

u=sinf/2 degrees Xsind forK forLi forK for ki
0.00 0 0 0 0 000 0
0.10 11.5 0.004 0 0 000 OM®
0.20 23 0.03 0.005 0005 002 oM
0.30 35 0.10 0035 0035 0.13 013
0.40 47 0.23 0.090 0.090 032 om
0.50 60 0.43 0.190 0.190 065 068
0.60 74 0.70 0.315 0.265 102 088
0.65 81 0.83 0.345 0.275 1.04 083
0.70 89 0.98 0.375  0.265 107 0.7
0.75 97 1.11 0.393 0.220 103 0.5
0.80 106 1.22 0400 0125 095 0.3
0.85 116 1.30 0385 0025 082 008
0.90 128 1.28 0.340 0010 0.60 0.02
0.95 144 1.07 0305 0.025 038 008
0.97 152 0.88 0.300 0.033 029 008
0.98 157 0.70 0.296 0035 023 008
0.99 164 0.54 0.293 0.040 0.17 0.02
1.80 180 0.00 0290 0042 000 000

|

0=120°. We also tabulate
F ()= (JS)*(1—cosb) sind, (32)

for potassium and lithium. Values of q as a function of
6 for k in the [100], [110], and [111] directions were
obtained by measuring on a diagram such as that in
Fig. 10, the integral of Eq. (31) plotted as a function of
6, and I (k) evaluated graphically. The results are shows
in Table VII; we have also evaluated I(k) counting
U.K. processes only. This takes account of the large
velocity of sound for the longitudinal phonons by nes
counting these processes at all.

As pointed out before the integration for k(111) &
unrepresentative since the possible scattering processes
depend strongly on the particular great circle on the
Fermi sphere for which we have chosen to do the @ inte
gration; because of the strong ¢ dependence no tw
dimensional integration will give a very meaningf
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"asLE VIL {(k), [see Eq. (31)], for various conditions.

Direction of k

Quantity [110] [111] [100]
1-0.3Y, 1.5 0.5 0.7
Using potassium matrix element
%), Nand UK.
rocesses-aribtrary units 16 48 57
k)X 100
rroportional to (k) 22 21 1.8
only 26 "o #

U.K. only 38 2.9 23

Using hithium matrix element

v units 58 ™ 62 71
17 1.6 14

&), UK. processes only 25 28 40
k)T X 100 U.K. only 4.0 3.6 23

a meaningful estimate of 7(100) and +(110)
wuse of the weak ¢ dependence.
ne results show a difference of about 207, in the
wes of I{k) for the [110] and [100] directions « ount-
both N and U.K. processes and using either the
sum or the potassium matrix element. If only U K.
resses are counted the difference becomes nearly
-~ using the potassium matrix element and 609,
o the lithium matrix element.
Ye have also tabulated 1—0.3Y; for the three prin-
« directions. This gives the dependence of 7(k) on
sixth order Kubic bharmonic with C,=-0.3. It
waid be pointed out that we have no way of knowing
there is no reason for C and C, to be simply related
e way 4 and A, were for certain shapes of the £
# curves. In addition, even though the influence of
@ n* may be small because of the smaller size of the
‘Miicients arising from the fourth order Kubic har-
«sic its influence on 7 is not. It is interesting to note
++ both matrix elements give 7(110) > r(100) as would
‘e case if r were proportional to 1—0.3Y .
#e conclude that if the matrix elements obtained by
“yn are correct, then the geometry of the U.K.
wesses alone is sufficient to produce appreciable
‘wetropies in r for both potassium and lithium. The
~wity of sound is also highly anisotropic in the
«lis and may produce further anisotropy in r; like
geometrical factor (1/¢*) it is most significant in the
dapp region.
e highly anisotropic (k) for lithium is in line with
warge deviation of »* from unity for this metal noted
sble I; however it is not clear why the same devia-
foes not occur in the case of potassium where the
wtropy is also large. The form of F(8) for lithium
suggests a possible explanation for the strong tem-
are dependence of »* shown in Fig. 7. F(6) is much

nate of r(111). On the other hand Eq. (31} ¢un

more sharply peaked in the case of lithium than in the
case of potassium and although the peak is at §=75°
scattering processes at §=90° are still quite heavily
weighted. The wave vectors for phonons involved in
scattering from £(110) at #=90° are quite large [ap-
proximately 509, large than for k(111) or £(100) and
#=90°]; as the temperature is lowered some of these
phonons are no longer excited and the scattering should
be changed severely. The high Debye temperature,
Ar=430°K, suggests that there should actually be
“freezing out” of phonons at nitrogen temperature even
though we are interested in the Debye temperature for
transverse phonons which will be lower than the
specific heat 8p. There is, however, also the possibility
that the change in #* may be connected with the mar-
tensitic transition occurring near 77 K.
The smalil changes in #* with temperature for sodiun
amid potassinm may also be due 1o the beginning of the
treezing out™ of some phonons. However, the scatter-
ing function F(#) is much less sharply peaked in the
case of potassium than in the case of lithium and so the
total scattering is much less sensitive to the freezing out
of large ¢ phonons. In addition the Debye temperatures
are lower for these metals. Both factors should decrease
the temperature effect in sodium and potassium.

CONCLUSIONS

The observed pressure effects in the alkalis require
i assumption of an anisotropic scattering time, (k.
i order to explain how relatively small increases in the
warping parameters which describe the Fermi surface
cause n* to decrease. The assumption of anisotropy in
(k) is required both by the sign of the pressure effect,
and, in the case of sodium and lithium, by its magni-
tude. The anisotropy in the shape of the Fermi surface
is small, except possibly in the case of cesium, while
the anisotropy in 7, is large. The anisotropy in = comes
from: (1) the fact that 1/|q|? occurs as a k dependent
weighting factor in the expression for 7 and (2) the fact
that 1/¢q,* occurs as a highly anisotropic weighting
factor in the same expression.
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