
DEUT T61 

-ICAL REVIEW VOLUME 124. NUMBER 3 NOV E M B E R I. 1961 

Pressure Dependence of the Hall Constant of the Alkali Metals· 

THOM:AS DEUTscH,t WILLIAM: PAUL, AND HARVEY BIlOOKS 

Gordrm McKay Laboratory of Applied Scienu, Harvard University, Cambridge, Massachusetts 

(Received June 27, 1961) 

The pressure dependence of the Hall constant of the five alkali metals has been measured to 15 000 kg/em· 
at room temperature. The purpose of the measurements was to investigate the effect of lattice constant on 
the warping of the Fermi surface. The Hall constant R is written as I/Necn-, where N is the number of 
carriers/cc and n- expresses the deviation from the free electron value of the Hall constant. In all the alkalis 
except cesium, n- decreases monotonically with increasing pressure j the decreases range from 5% in 15000 
kg/em' for lithium to 8% in 15 000 kg/ em' for rubidium. In the case of cesium, n- passes through a minimum 
at 5000 kg/cm' and rises to a value of 1.2 at 15 000 kg/cm'. The change of n- between room and liquid nitro
gen temperatures was measured and is less than 3% for all the alkalis except lithium. In lithium, n- decreases 
about 25% between room and liquid nitrogen temperature. The sign of the pressure dependence of n-, as 
well as its magnitude, can be reconciled with recent band structure calculations by Ham only if highly 
anisotropic scattering times are considered. The pressure results are explained in a semiquantitative manner 
using a scattering time, T, that varies by a factor of 3 over the Fermi surface. Consideration of the factors 
determining the scattering time indicates the both umklapp processes and the large elastic anisotropy of the 
alkalis contribute to the anisotropy of T. A crude calculation shows that the present results can be explained 
by the effects of umklapp processes alone. 

HE Fermi surface in metals has recently been ex-
tensively investigated, theoretically and experi

•• .IIy. The alkali metals are of special interest, for 
... e expected to conform closely to a free electron 

, in which the electron energy E is proportional 
square of the electron wave number k, and in 
the Fermi surface is consequently a sphere in k 
Furthermore, there have been some calculations 
allow the shape of the Fermi surface to be de
The recent calculations by Ham l of the band 

of the alkali metals are of particular impor-
tor several reasons. They provide curves of E vs 

tJae three principal directions in k space and allow 
of an approximate shape for the Fermi 

They are made for the entire alkali series, using 
method in each case, and should give a quali

picture of the change in the shape of the Fermi 
_.-,--_ as one progresses through the series. They have 

carried out for several values of lattice constant 
flIOvide a guide to how the Fermi surface should 

under pressure. 
'te the fact that there has been considerable 

made in experimental techniques for studying 
enni surface, the methods that proved very suc-

in investigating the noble metals, de Haas-van 
measurements using pulsed magnetic fields2 and 

orements of acoustic attenuation in magnetic 
have not been applied to the alkali metals. This 

.rge part because of the difficulty of growing and 
ng single crystals of these very reactive metals. 
l' these techniques for determining the shape of 
nni surface are quite difficult, one can attempt 

oported by the OfIice of Naval Research. 
cot address Raytheon Research Division, Waltham, 
~tts. 

S. Ham, Proceedings (If the Fermi Surface Conference 
'iley & Sons, Inc., New York, 1960), p. 9. 

oIIIoenberg, Phil. Mag. 5, 105 (1960). 
Morse, A. Myers, and C. T . Walker, I'hys. Rev. Letters 
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to glean some information from measurements of the 
transport properties. In particular, it would be interest
ing to make such measurements as a function of lattice 
constant by performing them under pressure. The 
alkalis are particularly attractive for such measure
ments, since they are highly compressible; the linear 
contraction of potassium, for example, is 9% in 15 000 
kg/ cm2• In order to take advantage of the pressures 
available in the laboratory, the experiment should be 
done at room or liquid nitrogen temperatures, since at 
liquid helium temperature the pressure transmitting 
fluid would freeze at relatively low pressures. 

The simplest transport property to measure is the 
conductivity; Bridgman has measured the resistance 
of all five alkali metals as a function of pressure.- For 
a metal having a ,spherical Fermi surfa<;:e the conduc
tivity, CT, is given by 

CT= N e2r/ m*, (1) 

where N is the number of electrons/cc, e is the elec
tronic charge, T is an isotropic scattering time, and m* 
an effective mass. 

For a nonspherical Fermi surface this expression is 
multiplied by a factor that depends upon the distortion 
of the surface. Olson and Rodriguez7 give this factor for 
a particular type of warping. Since the conductivity 
depends upon the magnitude of the scattering time and 

ive mass both of which rna have stron 
pressure dependences, Bridgman's data are difficult to 
interpret. Furthermore, since more detailed study shows 
the conductivity is relatively insensitive to distortion 
of the Fermi surface, these data are not useful for study
ing the pressure dependence of the surface. 

On the other hand the expressions for the magneto-

• P. W. Bridgman, Phys. Rev. 27, 68 (1926). 
• P. W. Bridgman, Proc. Am. Acad. Arts Sci . 72,176 (1938). 
• P. W. Bridgman, I'roc. Am. Acad. Arts Sci. 81, 184 (1952). 
7 R. Olson and S. Rodriguez, Phys. Rev. 108, 1212 (1957). 
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resistance of a metal with a warped Fermi surface ob
tained by Olson and Rodriguez show that this property 
is quite sensi tive to t he shape of the surface. U nfor
tunately the size of the magnetoresistance effect de
pends on the square of the mobility and becomes ex
tremely small at room temperature. Measurements by 
Kapitza8 on sodium and lithium using pulsed magnetic 
fields of 300 kgauss at room temperature showed re
sistance changes of less than 2%; since the effect goes 
as the square of the magnetic field ordinary dc magnetic 
fields of 10 kgauss would produce resistance changes of 
0.002%, too small to be useful. 

The Hall effect is another transport property that can 
be studied. The Hall constant, R, is defined by 

E=RJH, (2) 

where E is the electric field in the y direction produced 
in a sample in which a current of density] flows along 
the x direction and which is subject to a magnetic field 
H along the z direction. The Hall constant, in units of 
(volt-cm)/ (ampere-gauss) , may be written as 

R= 1/ Necn*, (3) 

where c is the velocity of light in em/ sec and n*, which 
we shall refer to as electrons/ atom, is a factor which is 
unity if the expression for R is derived for the case of 
free electrons or for any spherical Fermi surface. More 
accurate treatments of the Hall effect involve solving 
the Boltzmann transport equation for specific forms of 
the energy, E(k), and the scattering time r(k). The 
Hall constant is then given as the quotient of two inte
grals involving the scattering time and energy deriva
tives taken over the Fermi surfaces; Il* is then obtained 
as a factor which depends only on the anisotropy of 
r(k) and E (k), and is independent of the magnitude of r. 

Cooper and Raimes have carried out such a calcula
tion for the case of anisotropic scattering times and 
warped Fermi surfaces that are described by Kuuic 
harmonics. lO •ll They express the length of the wave 
vector of an electron on the Fermi surface a!': 

Similarly they write 

( iJk) =ko'[1+BY.(O,4»+B I Y6 (O,4»]; (5) 
dE E_E/ 

the derivative is taken at the Fermi energy £/. The 
scattering time is also expanded in Kubic harmonics; 

r= r[l +CY .(0,4» +c. Y 8(0,4>)]. (6 ) 

The Kubic harmonics Y.(O,4» and Y 8(0,4» arc combina
tions of spherical harmonics having cubic symmetry; 

8 P. Kapitza, Proc. Roy . Soc. (London) A123, 292 (1929). 
• A. H. Wilson, The Theory of Af elms (Camhridge University 

Press, New York, 1953), p. 226. 
10 J. R. A. Cooper and S. Raimes, Phil. Mag. 4, 145 (1959). 
11 J. R. A. Cooper and S. Raimes, Phil. Mag. 4, 1149 (\959). 

they are given by l2 

Y .(0,4» = 5/2(x4+y4+z4- 3/5), 
and 

Y e(O,4» = 231/2 (x2yzL Y.(O,4»/55-1/lU-

where x= sinO co54>, y= sinO sin4> and Z= cos8 
principal directions the values of the Kubic ha l 
are: 

y'(100) = 1, Y.(llO)= 1/4, Y.(1l1)= 

Ye(100) = 1, Ye(1l0)=-13/8, Y 8 (111)= I t 

By evaluating the expression for the Hall constal 
the above forms for the scattering time and thet€""&,~ 
energy surfaces Cooper and Raimes obtain an 
sion for n*; 

n*= 1+-l/ 21[9AL 18A (C-B)- (C-B)2] 
+8/ 13[20A IL40A I(CI-BI)- (Cl-B I \ 

As expected, n* is unity for sperical surfaces a 
tropic scattering times. -

Except ior t he direct volume dependence ot 
pressure dependence of R comes from n*. eh .. 
n* reflect changes in the anisotropy of the Fermi 
and/ or the anisotropy of the scattering time. If 
urement of t he pressure dependence of the Hall I ' 

is performed in the impurity scattering rangt 
the anisot ropy of t he scattering time is direct I) 
only to t he anisotropy of the Fermi surface, t hI 
of the measurement can be interpreted in ,. 
changes of the anisotropy of the Fermi surfat . 
in a room temperature measurement lattice St 
is dominant and t he possibility of anisotro~)\ 

scali ering time arising from t he clastic aniSt.\ 
the crystal must be considered. 

In addition to sen'sitivity of the Hall effa 
anisot ropy of the Fermi surface and of the !41 

time there are some experimental advantages I 

measurement. It can be performed at room 
ture, single crystal samples are not necessary ... 
the scattering is dominatecl by the lattice small 
of impurities arc not important. 

EXPERIMENTAL" 

The electrical measurements were perforll •. 
de system using a Rubicon No. 2767 J.LV p"l 

with a galvanometer amplifier as a dete< , .. 
vanomcter amplifler employed a simple vl H 
to focus the light reflected by the mirror of 
galvanometer onto two selenium photocell .. 
connected so that their voltages oppost'd 
of the pair fed a secondary galvanomt' \. 
vanometer amplifier had a sensitivity 01 

12 F. C. von der Lage and H. A. Bethe, Ph, 
(1947). 

13 The experimental setup is descrihed in I' 
Technical Report HP-6, Gordon McKay La ...... 
University, Cambridge, Massachusetts, 1960 ( Ull 
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.udary galvanometer deflection, making it possible 
·~lve 10-8 v. The sample current was 3 amp. The 
net was of laboratory design, with 7-in. pole pieces 
.1 2-in. gap. After initial checks on the linearity of 
voltage vs magnetic field, all measurements were 
. by reversing a fixed field of 6310 gauss. 
Ie samples were placed in a beryllium-copper bomb, 
h was connected by i -in. flexible stainless steel 
Ig to the piston and cylinder arrangement used to 
rate the pressure. The bomb has been described in 
ient detail elsewhere. 14 The electrical leads were 
I(ht out through a four terminal plug of beryllium 
r. The pressure was determined by measuring 
a bridge the change of resistance of a manganin 
which was calibrated by assuming the freezing 

,ure of Hg at O°C to be 7640 kgjcm2• Pentane was 
as the pressure transmitting fluid. 

tmple preparation and handling presented some 
• ulty, since the alkali metals are highly reactive. 

usual technique for making and preserving alkali 
.11 samples for electrical measurements is to freeze 
metal in glass capillaries or ampules. This is not 
ble for measurements under pressure because the 
t of the glass is to generate nonhydrostatic strains 
he sample. The sample holder finally developed, 

wn in Fig. 1, incorporates severa] compromises. In 
(Or to expose the metal to the pressure fluid we had 

lerate some surface oxidation. While it is desirable 
"lave the sample completely free to contract under 
".'lUre, it was necessary to constrain it somewhat in 
a to make reliable contacts and to keep the sample 
ntation fixed. The relatively small hysteresis found 
urves of Hall voltage vs pressure, of the order of 
. and the agreement of the pressure dependence of 
resistance of rubidium with the data of Bridgman 
free samples to at least 10%, indicates that the 
lple is behaving as if it were unconstrained. 
r he samples of lithium, sodium, and potassium were 
!TIed under Deo Base, a light mineral oil, by rolling 
heet of the metal to a thickness ranging from 0.007 
to 0.050 in. and trimming it to the shape shown 

lie it was on the sample holder. In the case of 
,idium and cesium, it was necessary to cool the oil 
tpproximately 5°C in order to reduce the oxidation 
,. and, in the case of cesium, to prevent melting. The 
I Base and the pentane pressure transmitting fluid 
t: purified by reacting them with alkali chips and 
,ules of molten sodium-potassium alloy. 

,'he lithium, from Fairmount Chemical Company, 
, the potassium from Mallinckrodt Chemical Com
'Y, were cleaned by heating to above the melting 
n l under forepump vacuum. The sodium, from 
rrk and Company, was cleaned by melting under 
The object of the cleaning proces.'1 was to produce 
roscopically homogeneous specimens, not to remove 

W. Paul, G. B. Benedek, and D. M. Warschauer, Rev. Sci. 
30,874 (1959). 
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FIG. 1. Sample holder and sample. 

impurities which were found not to be important in the 
lattice scattering range, as would be expected. The 
rubidium and cesium were obtained from MacKay and 
from Fairmount Chemical; they had already been dis
tilled into glass vials and no attem'pt was made to clean 
them further. 

Although the primary interest was in relative changes 
of the Hall constant, thickness measurements were 
made on lithium, sodium, and potassium using a 
0.001-in. dial comparator with an accuracy of 0.001 in. 

Temperature measurements on lithium were per
formed using a sample holder similar to that used in the 
pressure experiments. The sample holder and an asso
ciated heater were enclosed in a glass tube filled with 
helium exchange gas and the entire assembly was 
placed in a nitrogen Dewar; temperatures below 77°K 
were obtained by pumping on the liquid nitrogen and 
measured using a copper-constantan thermocouple. 
Rubidium and cesium were protected from accidental 
exposure to air by enclosing the sample holder in a 
formica tube filled with mineral oil. 

RESULTS 

Figure 2 shows the results of the pre..sure measure
ments on typical samples of lithium, sodium, and 
rubidium in terms of the normalized Hall voltage at 
fixed field V If vs pressure. As an indication of the kind 
of reproducibility achieved, in a total of five runs on 
two different samples of rubidium the decrease in V H 

in 15000 kg/ cm2 was between 12% and 13% for four 
of the runs and 9% in the fifth run. 

In contrast to the pressure results on the other 
alkalis, the results for different potassium samples did 
not agree. Figure 3 indicates this difference and the 
approximate range of the value of V Hat 15000 kg/cm'. 
The resistance vs pressure curve for potassium was 
anomalous insofar as it consistently differed from the 
data of Bridgman.6 Our value of 0.4 for the normalized 
resistance at 15000 kg/cm' is in sharp disagreement 
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FIG. 2. Normalized Hall voltage vs pressure for lithium, 
sodium, and rubidium. 
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FIG. 4. Normalized Hall voltage vs pressure for cesium with Bridgman's value of 0.22. Because we suspected 
that our sample holder might be acting as a constraint 
we repeated Bridgman's experiment, which used a free Since t he Hall voltage is 
wire of potassium. Although difficulties with the con- VII=RHI/t=HI/ iVecn*t, 
tacts caused sample current fluctuations and made it 
impossible to get accurate curves, the value of the where t is the thickness of the sample and I the san. 
normalized resistance at 15000 kg/ cm2, 0.4, was current two dimensional corrections must be aPV' 
confirmed. to obtain n*. These give 

Figure 4 shows a typical Hall voltage curve for n*= V(P)/VJ[(P)t(P), 
cesium; this measurement was made at approximately 
14°C. The reproducibility was good; the value of where t(P) is the thickness as a function of pre!-" 
VII at 15 ()()() kg/cm2 was between 0.61 and 0.64 for six and V(P) the volume. V (O)=t(O)=1. The valuf" 
runs on two different samples. }' V(P) and t(P) are obtained from Bridgman's I 

0.90 

o INCREASING PRESSURE} 
cf DECREASING PRESSURE SAMPLE m - 99 

6 INCREASING PRESSURE} 
{ DECREASING PRESSURE SAMPLE m - 115 

0.B5 '------;5:::0'='OO:-------c10"'OOO~-----,5-.JOOO 
PRESSURE kg 10 m 2 

FIG. 3. Normalized Hall voltage vs pressure for two 
different potassium samples. 

pressibility data.4 .15 n* was arbitrarily normali7A"t 
unity at atmospheric pressure. The resulting CUI" 

n* vs pressure for the alkalis are shown in Figs. 5 '" 

1.00 IIJE::::-------,--------r-----

n* 

Q95 

RUBIDIUM 
m'lso 

0 .90 '-------5=-0:-i
O
=-O,-------,O-OOL-

O
----

PRESSURE kg /cm 2 

FIG. 5. n*, normalized electrons/atom vs pressure for It 
sodium, potassium, and rubidium. 

15 P. W. Bridgman, Proc. Am. Acad. Arts Sci. 70,93 
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' 0 . 6. tI·, normalized electrons/atom vs pressure for cesium .. 

c: curves for lithium and sodium, where the pressure 
·t was both small and linear, were computed from 
average of the least square slopes of V H vs pressure 
two lithium samples and four sodium samples. The 

-ves for potassium, rubidium, and cesium were ob
ned from the values of V H read from curves for 
'ific samples which, except for potassium, were well 

ucible. Since we were interested in fitting the 
.pe of the n* vs pressure curve the extra precision to 
pined by doing a least squares fit of all the data to 
~ratic curve was not needed. 
f igure 7 shows n* vs temperature for lithium. The 
lues of n* are computed from the measured values of 

using Bridgman's' values of the thermal expansion. 
e I shows the values of V Hand n* at room and 

'd nitrogen temperatures for sodium, potassium, 
. 'um, and cesium; ,,* is not given for cesium 

. &use no value of the thermal expansion coefficient 
available. 
In the course of interpreting the results we become 
crested in the absolute value of ,,*; in particular we 
iced that the literature values of the Hall constant 

1.0 

n" 

0 .9 

0.8 

0 .1 
~ SAMPLE III - 18 

0.6 ~L.O---'-O ---------_..J.'OO-----------
2
.L..
OO
-l 

TEMPERATURE ' e 

FIG. 7. tI·, normalized electrons/atoms vs 
temperature for lithium. 

TABLE I. Hall voltages of four alkali metals at room 
and liquid nitrogen temperatures. 

v. If· 

Metal Temp. Normalized Normalized 

Cesium R.T. 1.000 
77 oK 0.973 

Rubidium R.T. 1.000 1.00 
77°K 0.971 1.00 

Potassium R.T. 1.000 1.00 
77 oK 0.981 0.98 

Sodium R.T. 1.000 1.00 
77°K 1.000 0.97 

for sodium and potassiuml6 gave n* greater than unity. 
As we expected, for reasons that will be given in the 
discussion, that n* should be less than unity we de
cided to compute the absolute value of the Hall constant 
from our data where possible. Figure 8 shows 2V H vs 
the reciprocal of sample thickness for sodium, lithium, 
and potassium; the slopes of these plots were used to 
obtain the Hall constants. Table II lists the values of 
Rand n* obtained, along with values of R calculated 
.on a free electron basis and values of n* calculated from 
published data on lithium,17 rubidium,18 and cesium.1e 

The electrical portion of the measurement is accurate 
10 better than 2%, since the accuracy of the voltage 
measurement is about 1% and the current and mag
netic field measurements are each accurate to better 
1 han !%. The thickness measurement, accurate to 
0.001 in., gives a 10% error on (0.010 in.) samples and 
an error of less than 5% on the thicker (0.020 in. to 
0.050 in.) samples. Since the latter were favored in 
tilting straight lines to the points shown in Fig. 8, we 
estimate the error due to the thickness measurement is 
5%. The over-all accuracy of the measurement is 7%. 
The accuracy of the previous Hall measurements is 
given as 6% for sodium and 5% for potassium, 11 so that 
the disagreement falls outside of experimental error . 

TABLE II. Hall eonstanu of the alkali metals. 

R-J •. X 1()1' 
volt-em 

amp-gauss 

R.IPXlOlJ 
volt-em 

amp-gauss 

....... 

Li 

13.5 

15.5 

Na K Rb 

24.5 46.5 

25 .8 49.0 

0.95 

C. 

II· from literature 
values of R-

0.87 

0.79 

0.95 

1.17 1.11 0.94 0.98 

It F. J. Studer and W. D . Williams, Phys. Rev. -47, 291 (1935). 
17 A. v. Ettingshausen and W. Nernst, Ann. Physik 29, 343 

(1886). 
II E. Krautz, Z. Naturforsch. 511, 13 (1958). 
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DISCUSSION 

I~O 

The results of the pressure measurements show two 
important features. First, for the elements lithium, 
sodium, potassium, and rubidium the value of n* de
creases as the pressure increases. Second, in cesium n* 
goes through a minimum as the pressure increases. 

Equation (9) for n* contains too many parameters 
to allow any conclusions to be drawn from the experi
mental data alone. However the computations of Ham 

can be used to obtain those parameters which d 
the warping of the Fermi surface as a function of 
sure; we shall see that not even the direction Of 

experimental effect can be explained on the baSI!> 
pressure dependent warping of the Fermi surface 
and that the scattering time must also be II 
anisotropic. 

Ham's data give electron energy vs ka/2~ , wb Q/ 
is the lattice constant, for the [l00J, [110J, and [II 
directions. If the Fermi energy is known, the lengt 
the k vector to the Fermi surface can be obtained 
the three principal directions and Eq. (4) u 
compute ko, A, and A 1. The Fermi energy may bt 
tained from the requirement that the volume in " 
enclosed by the Fermi surface contain exactly OM 

tronic state per atom. Using an expression f<w 
volume enclosed by a surface of the form giv 
Eq. (4) one can show that for the values of the w 
coefficients encountered in the alkalis the en 
volume is, to better than 2%, just that of a sp 
radius ko. The condition on the enclosed volume 
the requirement 

koa/2T = 0.62. (II 
The Fermi energy was obtained simply by pidtiftC _ 
energy for which the computed value of ko sat' 
Eq. (12). The results of this procedure are giv 
Table III along with the values of ak/ 2T for thl' r 
principal directions; the last ligure on the value 
and A 1 is not justified by t he precision of t he fir l 
given to avoid obscuring some of the changes I. 
warping parameters. In Table I V we give the w 
paramet ers for lattice constants correspondinK It' 

mospheric pressure and to 15000 kg/cm2, as obI 
by a linear interpolation using the data in Table III 

The coefficients Rand BI are not independent 
and A 1, but depend upon them through some ... 
cumbersome algebraic expressions. Table III 
that the k vectors for the [l00J and [ . 11 J dirf'\ 

TABLE III. Warping parameters for alkali metals compv .... 
from data of Ham. 

a ak 100 ak llo Ilklll 
atomic 

Metal units 2" 2 ... 2 .... A ,-4 

Li 8.11 0.613 0.623 0.613 -0.002 
6.65 0.607 0.634 0.613 -0.011 
5.34 0.575 0.665 0.590 -0.031 

Na 10.04} 
8.11 No anisotropy 
6.65 

K 11.46 0.625 0.640 0.625 -0.003 
10.05 0.620 0.620 0.620 0 
8.11 0.585 0.675 0.575 -0.013 

Rb 12.57 0.611 0.629 0.611 -0.004 
10.74 0.605 0.627 0.605 -0.005 
9.05 0.560 0.680 0.560 -0.028 

Cs 13.35 0.600 0.655 0.600 -0.013 
11.46 0.580 0.670 0.580 -0.021 
10.04 0.495 0.655 0.495 -0.041 
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usaLly equal; in this case Eq. (4) leads to the con
A=0.47A 1• We used this relation to compute 

and BI for values of A 1 between 0.00 and -0.08; 
result can be expressed as 

B/A=B1/ A 1=3.3-60A I, for A1<O. (13) 

Before attempting to fit the curves of n· vs pressure 
it is useful to notice that the terms arising from the 

order Kubic harmonics dominate the expression 
n·, Eq. (9); if C=O and IA I ~O.03 the terms in A 

and B contribute only about 1% to n·. We can simplify 
the fitting of the data with no significant error by con- ' 
llidering only the contribution of terms in A I, B I , and 
C 1 to n·; the expression for n· t hen becomes: 

n*= 1+12.3A lL24.6A I(C1- B 1)-O.615(CI-B 1)2. 

(14) 

Examination of this expression together with Eq. (13) 
and Table IV shows that if the scattering time is taken 
to be isotropic, that is if C 1 = 0, the predicted change in 
n· will be an increase as the pressure increases. In order 
to obtain a decrease in n· with an increase in A I a non
zero value of C I must be considered. In Fig. 9 we give 
!lOme curves of n· vs A I obtained using Eqs. (13) and 
(14) and various forms of C1• CI= -0.3 and C1= -0.4 
represent the simplest nonzero CI's whose magnitudes 
give values of n· at Al = 0 that are in the same range as 
the observed values. The other forms of C1 were chosen 
because they give a steeper initial slope of the n· vs 
AI curve. 

The experimental data can be semi-quantitatively 
fitted using non-zero C I'S of the form shown in Fig. 9; 
that is the change in n· produced by changes in A I of 
the magnitude indicated in Table IV is consistent with 
the size of the observed effect. Furthermore the value of 
•• passes through a minimum and then rises rapidly; 
no additional assumptions need be introduced to 
account for the observed minimum of n· in cesium. 
However a quantitative fit does not seem feasible at 
this stage; some theoretical guidance as to the form of 
C1 is needed. It is perhaps worth noting that while the 
consideration of nonzero CI's was forced upon us by the 
direction of the change in n·, it is also needed to account 

Tuu IV. Warping parameters of alkali metals at two pressures, 
computed from data of Ham. 

a 
Pressure atomie 

Ketal kg/em' units A A, 

Li 1 6.64 -0.011 -0.011 
15 ()()() 6.42 -0.015 -0.015 

~ 1 9.85 -0.001 -0.003 
15 ()()() 9.00 -0.007 -0.026 

all 1 10.64 - 0.006 -D.OIS 
15 ()()() 9.55 -0.021 -0.047 

C. 1 11.44 -0.021 - 0.045 
15 ()()() 10.01 -0.041 -0.088 

--

0.5 n •• I + 12.3 A,' - 24.6 A,(C,-B,' - .615(C,-BJ' 

B, • 3.3 A, - 60 A,' 

-.05 -'.10 

FIG. 9. n· vs A 1 for various values of C1• 

for the magnitude of the change in n· in sodium and 
lithium, where the predicted change in A 1 is small. 

Several difficulties with the fit should be considered. 
Ham's data, in Table IV, indicate the warping in sodium 
is zero both at atmospheric' pressure and at 15000 
kg/ cm2, making it impossible to attribute the change 
in n· to the pressure dependence of A I. However the 
existance of a low temperature magnetoresistance in 
sodium implies that there is a small anisotropy of the 
Fermi surface although this effect might conceivably 
be connected with the martensitic transition that 
sodium undergoes above hydrogen temperature or with 
anisotropic scattering times. If A I is nonzero for sodium 
we expect it to change with pressure and if CI is large 
enough the observed effect could still be accounted for. 

The calculated change in A 1 for lithium is small 
(0.004); in order to account for the observed 5% change 
in n· we chose a value for C1 of -0.4+5Al to obtain 
a sufficiently steep initial slope on the n· vs A 1 curve. 
The value of n· for lithium at atmospheric pressure ob
tained from this curve is 0.78, in agreement with the 
fact that the absolute value of n· for lithium is sub
stantially less than one (Table II). By contrast the 
absolute values of n· are much closer to unity for the 
other alkalis; this suggests that the value of C1 for 
lithium should be different from that for the other 
alkalis. 

In order to account for the observed minimum in n· 
for cesium it is necessary to postulate that the at
mospheric pressure value for A I is approximately -0.02 
indicating considerably less warping than Ham's cal
culations, which give -0.045. With this assumption 
about A I, the cesium data can be explained by the curve 
for CI = -0.3+4.5 AI. If one accepts Ham's value of 
A 1= - 0.045 the curve for CI= -0.4+5 Al will produce 
a minimum in n· with further warping, but this curve 
also implies an unreasonably low value of n· at at
mospheric pressure (0.6). Alternatively, since the work 
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of Ham indicates that the Fermi surface nearly touches 
the zone boundary, it is possible that the drastic change 
in the behavior of n* vs pressure is due to the beginning 
of contact with the zone face. 

Another result of anisotropic scattering times is that 
the values of n* for A 1 = 0 are always less than one. As 
Ham's calculations indicate the Fermi surface for 
sodium is spherical the value n*= 1.17 obtained from 
previous measurementsl8 seems unreasonable, as does 
the value for n*= 1.11 for potassium. If we accept our 
values for sodium and potassium, the atmospheric pres
sure value of n* is less than one for all the alkalis; the 
proposed explanation for this is the existence of a non
zero Cl. 

The pressure data and the changes in the warping 
parameter A I obtained from Ham's calculation agree 
semiquantitatively if we consider anisotropic scattering 
times with values of C1 of about -0.3. We shall indicate 
possible sources of the proposed anisotropy and make 
an estimate of its order of magnitude. 

Mott and Jonesl ' have obtained an expression for an 
isotropic scattering time assuming a spherical Fermi 
surface and isotropic transition probabilities ; that is 
PH,aS', the probability per unit time of an electron 
making a transition between two states k and k' both 
lying on the same constant energy surface is assumed to 
be independent of the original state k and to be a func
tion of the angle 0 between k and k' only. as' is an ele
ment of area on a constant energy surface about the 
state k'. If we follow their denvation and let the electric 
field (z axis) lie along the direction k for which we wish 
to compute r(k), but do not assume isotropic scattering 
times or isotropic transition probabilities we obtain: 

1 i [ COs(Jr (k')] 
--= 1- Pu,as'. 
r(k) Fennl r(k) 

Ipbere 

(15) 

Since Eq. (15) is an integral equation for r(k) we shall 
set r(k')/ r(k) = 1 inside the integral in order to estimate 
the anisotropy of r(k). This may be regarded as the 
first step of an iteration procedure for finding r. With 
this assumption Eq. (15) can be written as 

1 fr fIr -=k,t d4> [1-cos(JJ lsinQ IPk .• (O)d8; (16) 
r(k) 0 0 

• is the angle between the plane of k and k' and the 
u plane and k, the radius of the Fermi sphere. 
These limits on 0 and ., rather than the more con
ventional ones in which fI goes from 0 to rand. from 
o to 2r, are chosen because of the possibility that 
Pk .• (8)~Pk .• ( -8). This possibility arises because for 
an arbitrary direction of k the section of the phonon 
Brillouin zone centered on the tip of the k vector is not 

D N. F. Matt aDd H. JOIIes, T"-7 of lIN P'(lpertw (If M dills 
aM A.lloys (Dowr Publications, New York, 1958), p. 259. 

symmetrical about the line 8=0. The • • e:-' • • , 
sign on sinO is used because of the limits .. 

Perturbation theory gives 

1 IUu' l! 
Pk .• (O)=- , 

Wli IVtEl~ ' 

where U u' is the matrix element of 
potential U taken between the initial .*.~ 
y,~ and the final state Y,k'; unit crystal volume 
Only the perturbation due to the lattice 
considered, since these dominate the sca~ttt_" 
trons at room temperature. We write 

U(r)= L V[r-I-R(I)J- V(r-I) 

=-L RCI)·VVCr-I); 
I 

where V (r-I) is the contribution to the poe __ 
associated with the ion at lattice point I and 
displacement of the ion at I. V(r-I) includel 
potential due to the ion core and to the electl_tl 
shield the core. This is a refined "rigid ion" 
which a neutralizing charge distribution .... 
with the ion core has been introduced. 

The wave functions are written in the Bloda '-

y,k(r) = e,k .rUk(')' 

By changing the origin to the lattice point at I ..... 
r'=r-I the matrix element may be written u 

UH '= -L RCI) exp[ -iCk-k'HJ 
I 

x f Y,k'*C")VVC,')y,~Cr')tlr'. <lit 
Jcryltal 

Bailyn20 has computed the integral in Eq. (JO) ... 
calculation that uses the Hartree-Fock equation" till 
electrons. In his notation 

i y,k'*Cr')VV(r')y,k(r')ar'=.f[JS], (21) 
cryltaJ 

where §=k-k'/Ik-k'i . J denotes the contn~ 
to the matrix element of the ion core alone and S deooe. 
a shielding factor which includes the effect of the eIec> 
tron cloud about the core and the exchan&e holl. 
Normalizing factors have been dropped. 

If we now express the displacement R(I) in tenDllI 
lattice waves we have, 

R(I)=LpLql •. "a •. pe" ·t, ( 

where l"" is a unit vector which depends on .. 
lattice vibration or phonon wave number and the 

10 M. Bailyn, Phys. Rev. 120,381 (1960). 
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lion p. a, is the amplitude of the vibration. Then 

• '~ - ~ ~ exp[ -i(k-k'+q)·I]a.,p ~ 2. ,,,·![JS]. 
• 1 I' 

(23) 
sum over I yields the condition 

- "+q=K, a reciprocal lattice vector, or=O, (24) 

a value N, the number of ions. Since k and k' are 
. ed and we have restricted II to the first Brillouin 
I q is specified and the sum over • reduces to a 
e term. a. is obtained from the matrix element for 

,..onon annihilation or creation operator and is given 

annihilation 

(25) 

creation, 

*re M is the mass of the ion and W • • P the angular 
t.quency of the phonon q,21 

II"" the equilibrium number of phonons is given by t" factor; 
1 

ii. ,,,= . 
exp(Aw. ,p/ kT)-l 

(26) 

In the high temperature limit -Aw/ kT«l and aM 
IIecomes 

[ 
h kT]l B1 

a",,= 2NMw"p Aw. ,,, = Nw.,,,· (27) 

The constants have been lumped into B; the 1/." 
caDCels the N from the sum in Eq. (23). 

Then by substituting Eq. (27) into Eq. (23) for U u' 

aIId dropping the sum over p with the understanding 
*t we will consider the polarization that gives the 
luJest contribution to U k,k' we obtain 

B [(IS}(9)](2. , ,,·~)2 
P",.(9) (28) 

4r2k I to.E I.' w. ,,,2 

When all the constants are included in D and Eq. (28) 
IUbstituted into Eq. (16) we obtain 

.!..--Df" ~fb d8 
) 0 0 

(l-cos6) I sinal [{IS} (9)](2",,'!) 
x------------------------ (29) 

We can now consider the !IOUrces of anisotropy in 
). The density of states factor is, strictly speaking, 

pic since a spherical constant energy surface was 
med in obtaining Eq. (15 ). If Eq. (15) is still 

ed valid for a warped Fermi surface, then 

J. M. Ziman, Electrons and Pillmoru (Oxford University 
New York, 1960), p. 181. 

TABLE V. Velocity of sound in potassium, Numerical values 
are for potassium in units of dynes/cm'X1Q-lt . 

Valueo aI ~"I" 
DIrection 01 Diroction 01 propqation 
polarization 100 11 0 111 

Trantve:rae 'u -2.6 c., -2.6 
[OOIJ 

[IIOJ 
Cll-Cli 

-----0 .• 1 
1 

'"-CII+£« 
------1.15 

3 

1/ I to.E I,,' acts as a weighting factor in Eq. (29). The 
variation of this factor with direction can be estimated 
using Eq. (5); for a warping typical of the alkali metals, 
A 1= -0.02, B=BI= -0,09, the value of the density 
of states factor varies by about ±20% from its average 
value, This is a relatively weak weighting factor, com
pared with the effect of w.,,,!. 

We now write 
(30) 

and chose for Cq , ,, the velocity of sound in the elastic 
limit (small q). 

Although this is incorrect for large q, we are only 
l'oncerned with indicating the relative importance of 
the longitudinal and transverse branches of the phonon 
spectrum and of the different directions of the same 
branch. In Table V, we list expressions for the velocity 
of sound squared times the density for the three prin
cipal directions22 and evaluate these expressions using 
t he published values of the elastic constants for po
lassium.2I The table indicates how bad the assumption 
of an elastically isotropic solid, usually made in com
puting T, is for the alkali metals. Since cq ,p! is sub
!'tantially larger for the longitudinal" modes than for 
1 he transverse ones the contribution of the transverse 
phonons to the integral Eq. (29) is weighted more 
!'t rongly than that of the longitudinal ones. Likewise 
certain transitions, namely those using [110J phonons 
polarized 110 will be weighted much more strongly than 
others. The anisotropy in the sound velocity is averaged 
in Eq. (29), since transitions from a given initial state 
k 10 those states for which the transition probability is 
large involve many different phonon directions. Since 
the angular terms in the integral Eq. (29) weight 
certain values of the scattering angle, 8, heavily and 
!lince the phonon direction for fixed 8 depends on the 
initial state k we do not expect averaging to be com
plete, although we expect the anisotropy of T(k) to be 
con!liderably less than that of c.,,,!. 

Another source of anisotropy is the term 1/ q2 in 
Eq. (29). For a normal (N) process, in which K=O, 
q d~d!' only on the angle 9 between k and k' ; how-

II Jules de Launay, SolUl-StaJe Physics , edited by F . Seitz and 
D. tumbull (Academic Press, Inc., New York, 1956), p. 267. 

.. A...mcalf lrutiJute of Physics Hatui.hook (McGraw-Hill Book 
Company, Inc., New York, 1957), pp. 3-81. 
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ever for an umklapp (U.K.) process in which K ~O, 
q depends not only on 0, but also on the particular re
ciprocal lattice vector K used. The latter depends on 
the initial state k. 

Figure 10 shows a cross section of the Brillouin wne 
for a bcc lattice, taken in a [OOlJ plane. The circles 
are cross sections of the Fermi surface and the dashed 
square is a wne for phonons, centered on the state k. 
The U.K. processes are those for which the final state 
k' lies on that portion of the circle centered at 0 which 
is outside the dashed square. The dependence of I q I 
on the initial state k can be most easily seen by taking 
0= 180° and k first in the [l00J and then in the [110J 
direction. For the latter direction I q I is about t as large 
as for k in the [100]. 

Normal processes must use longitudinal phonons, at 
least for those directions in which a separation into 
longitudinal and transverse modes is possible, because 
the term eq . ,,·~ becomes eq.,,· q and this is zero for a 
transverse mode. For a U.K. process ~ is not parallel to 
q and transverse phonons participate; indeed the small 
sound velocity for transverse phonons emphasizes those 
U.K. processes which use transverse phonons. 

We should like to obtain the anisotropy of T(k). To 
do this accurately one would need to choose a direction 
k, compute q, Cq . ,,2, and eq . " for a large number of points 
k' on a Fermi sphere and evaluate Eq. (29). This is a 
major computational task; a simpler but considerably 
less accurate procedure is to consider only scattering 
in two dimensions and evaluate the 0 integral in Eq. (29) 
for fixed 1/>. Some of the loss of accuracy comes from the 
fact that for some k directions the 0 integral depends 
strongly on the value of I/> chosen. For example, if one 
chose k in the 110 direction and replaced the Brillouin 
zone for phonons by a sphere of equal volume, there is 
I/> symmetry in the sense that I q I for fixed 0 is inde
pendent of 1/>, although C q •P and eq .,,·.§ are not; on the 
other hand for k in a 111 direction this is not true. 

-211" 
a 

-k. 
100 

FIG. 10. Cross section, in [OOlJ plane, of Brillouin 
zones for bee metal. 

We estimated the anisotropy in T(k) bye". 

i
2.- (l-cosO)lsinOI[{JS}(O)~ 

I(k)= 
o I ql2 

for k in the [l00J, [110J, and [111J direction 
a very crude procedure, which not only r~ . 
three dimensional integral in Eq. (29) by a two 
sional one, but also considers the velocity of 
polarization factor eq. ,,· ~ and the density of 
constants. The calculation will underestima.t 
anisotropy in T since it ignores the anisotropy ttl 
velocity of sound (Table V). 

We obtained the values of (JS)I from Bailyn" . 
Table VI we list his values of 1I'(JS)1 vs u=siDl/2 
potassium and lithium. Potassium was chosen .. 
sentative of all the alkalis except lithium, whicla 
from the others in that (JS)2 goes through a zero 

TABLE VI. Scattering functions for K and Li u.u.. 
Bailyn's values of u'(JS'f. 

fJ (l-cosfJ) u'(JS'f U'(JS)I F(fJ) I' 
u-sinfJ/2 degrees XsinfJ for K for Li for K _Li 

0.00 0 0 0 0 0.00 ~ 
0.10 11.5 0.004 0 0 0.00 OM 
0.20 23 0.03 0.005 0.005 0.02 .a 
0.30 35 0.10 0.035 0.035 0.13 O.U 
0.4Q 47 0.23 0.090 0.090 0.32 •• 0.50 60 0.43 0.190 0.190 0.65 0 .• 
0.60 74 0.70 0.315 0.265 1.02 OM 
0.65 81 0.83 0.345 0.275 1.04 O..D 
0.70 89 0.98 0.375 0.265 1.07 0.1' 
0.75 97 1.11 0.393 0.220 1.03 0 .• 
0.80 106 1.22 0.4QO 0.125 0.95 0..-
0.85 116 1.30 0.385 0.Q25 0.82 0 .• 
0.90 128 1.28 0.34Q 0.010 0.60 OAD 
0.95 144 1.07 0.305 0.Q25 0.38 O. 
0.97 152 0.88 0.300 0.033 0.29 O.as 
0.98 157 0.70 0.296 0.035 0.23 O.OS 
0.99 164 0.54 0.293 0.04Q 0.17 O.QZ 
1.80 180 0.00 0.290 0.042 0.00 0.00 

0= 120°. We also tabulate 

F(O) = (JS)2(1-cosO) sinO, (32) 

for potassium and lithium. Values of q as a function 01 
o for k in the [l00J, [110J, and [l11J directions Weft 

obtained by measuring on a diagram such as that ill 
Fig. 10, the integral of Eq. (31) plotted as a function Gf 
0, and I(k) evaluated graphically. The results are show. 
in Table VII; we have also evaluated I(k) count; 
U.K. processes only. This takes account of the laqp 
velocity of sound for the longitudinal phonons by 
counting these processes at all. 

As pointed out before the integration for k(ltl) 
unrepresentative since the possible scattering p~ 
depend strongly on the particular great circle OD 

Fermi sphere for which we have chosen to do the' 
gration; because of the strong I/> dependence no 
dimensional integration will give a very meani 
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\.aLE VII. l(k.), [ see Eq. (31)], for variuus conditions. 

Quantity 
l - U.3Y. 

Direction of II 
[II0J [ 111 J [l00J 

1 5 0.5 0.7 

l'sing potassium matrix dement 
, ~ and C K. 
"lCes~ lribtrary units #) -l8 Si 

1 ~-1 ~ 100 
rQ{>Ortiona l tr) n il , 2.1 2.1 l.8 
• U.L FOCesse5 only 26 34 +! 

X 100 U.K. only , " 2 9 2.3 

k . G. K. processes onlr 
k )=-'X IOU e lL on.} 

58 
I i 

-t.I) 

62 
1.6 

28 
3.6 

71 
t -! 

-1-(1 

1. 5 

lale oi ;0 111.. Un Lhe;; ,)~ht:r ' ",nd C,I. ;1 , (,I II 

u. meaningful estimate o[ TP(~) and Till) 

u...o:e of the wt::ak <P dependenct::. 
Ie results show a difference of abou t 1{)' r 111 the 

oi [ Il for tht:: [ 1toJ .lad [lOOJ dircction~ I (lUll I , 
hoth ~ and l'.K.. processes ami usi ng eith, r I Ill" 
am or the potassium matrL,,{ element. If only l "- . 
::SSeS are counted the difference becomes nearly 

using the potassium matrix element anci 60% 
the lithium matrix element. 

e have also tabulated 1-0.3}'6 fo r the three prin
directions. Till' gives the dependence of r(k ) un 

>i:n h order Kubic harmonic with C 1= -0.3. I I 
be pointed ou t that we have no way of knowin!! 

'lere is no reason for C and C 1 to be simply related 
way A and A1 were for certain shapes of the E 

curves. In addition, even though the influence of 
ft- may be small because of the smaller size of the 
'ents arising from the fourth order Kubic har
its influence on T is not. I t is interesting to note 

both mauL"\: elements give T( llO» T( lOO) as woulci 
ca.se if T were proportional to 1-0.3 r &. 

e conclude that if t he matri." elements obtained by 
"U are correct, then the geometry of the li . K . 

alone is sufficient to produce appreciab1t: 
.aupies in T for both potassium and lithium. Th~ 
' ty of sound is also highly anisotropic in the 
. and may produce further anisotropy in T; like 

metrical factor (1 f ) it i most significant in the 
p region. 

highly anisotropic n il) for lit hium is in line with 
e de .. iauon of n* trom unity for this metal noted 

ole I : however it is not clear why the same devia
oes ;Jot o<:cur in the ca.::-e of potassium where the 
ropy is also large. T he form of F (f) ) [or lithium 
ugges's a possible explanation for the strong tem
lre dependence of n* shown in fig. i. F (8) is much 

more sharply peaked in the case of lithium than in the 
case of potassium and although the peak is at f) = i 50 
scattering processes at f)=90° are still quite heavily 
weighted. The wave vectors for phonon inyol\'ed in 
scattering from k(llO) at f)=9(f are (j ui te large Cap, 
proximat ely 50% large than for k ( l11 ) or k( l OO) and 
0= 900 J; as the temperature is lowered some of these 
phonons are no longer exci ted and the sca It ering houln 
be changed severely. The high D ebye temp<:raturt', 
i1 n =·BOoK, suggests that there should actually be 
" freezing out " of phonons a t ni trogen temperature eyt-n 
though we arc interes ted in the Dcbye tem perature for 
t rans\'t'TSC phollons whi ch will be lower than the 
~peci fi \ heat eD. There is, howl'wr, abo tht possibi l it~ 
Iha l the Lh ;t ll ~e in n* may be ({mntt ted wi lh the mar 
l< ' n~i t ic transilit) n occurring neaf i~ oK .,. 

"h \· small \ hn ngcs in 1/* with tl I11p< r t U f L' iI', ",,, iIun 
111 01 potassiulll may also be du(' 10 I' t I)t'~ illni ' l g- of , he-

rn';;ing out" o[ 'iI/me phunulh. nll\\ler, the scatter
I I ~ function F te) is much less ~harp'Y lJeaked in lh ... 
, ,,,,e of potassium than in t he la~~ of lithium and so the 
Ifllal scattering is much less sen iliv(: to the freezing nU L 

',f large q phonons. In addition the Debye temperature~ 

are lower for these metal s. Both factors should decreast' 
he temperature effect in sodium and pota"sium. 

CONCLUSIONS 

'I'lli' observed pressure effects in the alkali;: requ irt: 
, ",,;sllmplion of an anisotropic scatierin!! time. ;o ( k , 

I 'rrler to explain how rela ti\'cly small increases in the 
\ rping para meters which describe the Fermi surface 

, all'l' ,,* to decrease. The assumption of anisotropy in 
r II!. ) is req uired both by the sign of the pressure effect. 
and , in t he case of sodium and lithium, by its magni
tude T he anisotropy in the shape of the Fermi surface 
i~ small, except possibly in the case of cesium while 
the anisotropy in T, is large. The anisotropy in T comes 
from : (1 ) the fact that 1/ I q 12 occurs as a k depend en 
weighting factor in the expression for T and (2) the fact 
that l ( cq ./ occurs as a highly anisotropic wei~hting 
[actor in the same expression. 

ACKNOWLEDGMENTS 

We should like to acknowledge the belp of J ames 
In~l i s and Charles Chase in the construction of t he higb 
pre, Sllrt' equipment. We should also like to thank 
I )r f fan k Ham for providing us ~-i th his results prior 
II publication and for several discussions. \\'e aT 
'r Hef ul to Dr. Webster Howard and Dr. '!anuel 
C,wtona for many suggestions and di s('u~"ions. One vi 
u' T.D .) would like to thank the , tandard Oil Com 
pany of California and the Un ion C trbidt' l ompa, ~ 
for fel lowship support while thb work ""&5 bt" i;)g finm 

•• c. S. Barrett, Phys. Rev. 72 , 145 (l9-l8). 


	Deutsch, T.-4467_OCR
	Deutsch, T.-4468_OCR
	Deutsch, T.-4469_OCR
	Deutsch, T.-4470_OCR
	Deutsch, T.-4471_OCR
	Deutsch, T.-4472_OCR
	Deutsch, T.-4473_OCR
	Deutsch, T.-4474_OCR
	Deutsch, T.-4475_OCR
	Deutsch, T.-4476_OCR
	Deutsch, T.-4477_OCR

